Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            This paper develops a machine learning methodology for the rapid and robust prediction of the glass transition temperature (Tg) for polymers for the targeted application of sustainable high-temperature polymers. The machine learning framework combines multiple techniques to develop a feature set encompassing all relative aspects of polymer chemistry, to extract and explain correlations between features and Tg, and to develop and apply a high-throughput predictive model. In this work, we identify aspects of the chemistry that most impact Tg, including a parameter related to rotational degrees of freedom and a backbone index based on a steric hindrance parameter. Building on this scientific understanding, models are developed on different types of data to ensure robustness, and experimental validation is obtained through the testing of new polymer chemistry with remarkable Tg. The ability of our model to predict Tg shows that the relevant information is contained within the topological descriptors, while the requirement of non-linear manifold transformation of the data also shows that the relationships are complex and cannot be captured through traditional regression approaches. Building on the scientific understanding obtained from the correlation analyses, coupled with the model performance, it is shown that the rigidity and interaction dynamics of the polymer structure are key to tuning for achieving targeted performance. This work has implications for future rapid optimization of chemistriesmore » « lessFree, publicly-accessible full text available March 1, 2026
- 
            Abstract. The IceCube Neutrino Observatory instruments about 1 km3 of deep, glacial ice at the geographic South Pole. It uses 5160 photomultipliers to detect Cherenkov light emitted by charged relativistic particles. An unexpected light propagation effect observed by the experiment is an anisotropic attenuation, which is aligned with the local flow direction of the ice. We examine birefringent light propagation through the polycrystalline ice microstructure as a possible explanation for this effect. The predictions of a first-principles model developed for this purpose, in particular curved light trajectories resulting from asymmetric diffusion, provide a qualitatively good match to the main features of the data. This in turn allows us to deduce ice crystal properties. Since the wavelength of the detected light is short compared to the crystal size, these crystal properties include not only the crystal orientation fabric, but also the average crystal size and shape, as a function of depth. By adding small empirical corrections to this first-principles model, a quantitatively accurate description of the optical properties of the IceCube glacial ice is obtained. In this paper, we present the experimental signature of ice optical anisotropy observed in IceCube light-emitting diode (LED) calibration data, the theory and parameterization of the birefringence effect, the fitting procedures of these parameterizations to experimental data, and the inferred crystal properties.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
